首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   0篇
  国内免费   2篇
废物处理   3篇
环保管理   9篇
综合类   10篇
基础理论   19篇
污染及防治   37篇
评价与监测   20篇
社会与环境   12篇
灾害及防治   1篇
  2023年   3篇
  2022年   5篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   4篇
  2016年   7篇
  2015年   1篇
  2014年   10篇
  2013年   11篇
  2012年   2篇
  2011年   5篇
  2010年   7篇
  2009年   7篇
  2008年   5篇
  2007年   6篇
  2006年   2篇
  2005年   7篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   6篇
  1985年   1篇
  1984年   1篇
  1978年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
11.
Eighty-two surface soil samples were collected from forest, grassland, tea estate, wildlife sanctuary, wetland, and roadside areas from the northeastern states of India, viz., Tripura, Manipur, and Assam. Thirteen different organochlorine pesticides (OCPs) were detected from background soils using gas chromatography electron capture detector. Manipur soils were found to be with higher concentration of dichlorodiphenyltrichloroethanes (DDTs), hexachlorocyclohexanes (HCHs), and endosulfan followed by Tripura and Assam. The spearman correlation coefficient shows significant correlation between HCHs, DDTs, and endosulfan isomers (r 2?>?0.5 and p?<?0.05). Additionally, α-HCH, δ-HCH, o,p′-DDE, and endosulfan-sulfate shows good correlation with total organic carbon in soil (r 2?=?0.5, p?=?0.05), indicating that the soil organic matter could enhance adsorption of these compounds, also demonstrating that the present OCPs in the background soil were from similar source. Further principal component analysis evaluates that most of the higher volatile compounds where clustered together in soil. However, after comparing with different states of Indian soil samples, the concentrations of OCPs in the present study areas are much lower and comparable with background soil across the globe.  相似文献   
12.
Surface emission from Dhapa, the only garbage disposal ground in Kolkata, is a matter of concern to the local environment and also fuels the issues of occupational and environmental health. Surface emission of the Dhapa landfill site was studied using a flux chamber measurement for nonmethane volatile organic compounds (NMVOCs). Eighteen noncarbonyl volatile organic compounds (VOCs) and 14 carbonyl VOCs, including suspected and known carcinogens, were found in appreciable concentrations. The concentrations of the target species in the flux chamber were found to be significantly higher for most of the species in summer than winter. Surface emission rate of landfill gas was estimated by using two different approaches to assess the applicability for an open landfill site. It was found that the emissions predicted using the model Land GEM version 3.02 is one to two orders less than the emission rate calculated from flux chamber measurement for the target species. Tropospheric ozone formation has a serious impact for NMVOC emission. The total ozone-forming potential (OFP) of the Dhapa dumping ground considering all target NMVOCs was estimated to be 4.9E+04 and 1.2E+05 g/day in winter and summer, respectively. Also, it was found that carbonyl VOCs play a more important role than noncarbonyl VOCs for tropospheric ozone formation. Cumulative cancer risk estimated for all the carcinogenic species was found to be 2792 for 1 million population, while the total noncancer hazard index (HI) was estimated to be 246 for the occupational exposure to different compounds from surface emission to the dump-site workers at Dhapa.
Implications:This paper describes the real-time surface emission of NMVOCs from an open municipal solid waste (MSW) dump site studied using a flux chamber. Our study findings indicate that while planning for new landfill site in tropical meteorology, real-time emission data must be considered, rather than relying on modeled data. The formation of tropospheric ozone from emitted NMVOC has also been studied. Our result shows how an open landfill site acts as a source and adds to the tropospheric ozone for the airshed of a metropolitan city.  相似文献   
13.
The adsorption of crystal violet from aqueous solution by NaOH-modified rice husk was investigated in a laboratory-scale fixed-bed column. A two-level three factor (23) full factorial central composite design with the help of Design Expert Version 7.1.6 (Stat Ease, USA) was used for optimisation of the dynamic dye adsorption process and evaluation of interaction effects of different operating parameters: initial dye concentration (100–200 mg L?1), flow rate (10–30 mL min?1) and bed height (5–25 cm). A correlation coefficient (R 2) value of 0.999, model F value of 1,936.59 and its low p value (<0.0001) along with lower value of coefficient of variation (1.38 %) indicated the fitness of the response surface quadratic model developed during the present study. Numerical optimisation applying desirability function was used to identify the optimum conditions for a targeted breakthrough time of 12 h. The optimum conditions were found to be initial solution pH?=?8.00, initial dye concentration?=?100 mg L?1, flow rate?=?22.88 mL min?1 and bed height?=?18.75 cm. A confirmatory experiment was performed to evaluate the accuracy of the optimised procedure. Under the optimised conditions, breakthrough appeared after 12.2 h and the column efficiency was determined as 99 %. The Thomas model showed excellent fit to the dynamic dye adsorption data obtained from the confirmatory experiment. Thereby, it was concluded that the current investigation gives valuable insights for designing and establishing a continuous wastewater treatment plant.  相似文献   
14.
The exploration, exploitation, and unscientific management of groundwater resources in the National Capital Territory (NCT) of Delhi, India have posed a serious threat of reduction in quantity and deterioration of quality. The objective of the study is to determine the groundwater quality and to assess the risk of groundwater pollution at Najafgarh, NCT of Delhi. The groundwater quality parameters were analyzed from the existing wells of the Najafgarh and the thematic maps were generated using geostatistical concepts. Ordinary kriging and indicator kriging methods were used as geostatistical approach for preparation of thematic maps of the groundwater quality parameters such as bicarbonate, calcium, chloride, electrical conductivity (EC), magnesium, nitrate, sodium, and sulphate with concentrations equal or greater than their respective groundwater pollution cutoff value. Experimental semivariogram values were fitted well in spherical model for the water quality parameters, such as bicarbonate, chloride, EC, magnesium, sodium, and sulphate and in exponential model for calcium and nitrate. The thematic maps of all the groundwater quality parameters exhibited an increasing trend of pollution from the northern and western part of the study area towards the southern and eastern part. The concentration was highest at the southernmost part of the study area but it could not reflect correctly the groundwater pollution status. The indicator kriging method is useful to assess the risk of groundwater pollution by giving the conditional probability of concentrations of different chemical parameters exceeding their cutoff values. Thus, risk assessment of groundwater pollution is useful for proper management of groundwater resources and minimizing the pollution threat.  相似文献   
15.
Recycling of plant materials and agricultural residues for biomethanation was attempted in vials. The methanogenic activities of certain sewage samples have also been tested. Both sterilized and non-sterilized biomasses were used. Biomethanation was carried out with dung samples (cow, goat, buffalo, piggery wastes and poultry wash) as wild populations of microbes and in combination with other microbial isolates (isolated in the laboratory).Biomethanation had been observed to be good in most cases and particularly with the sterilized biomass. Mixed inoculum (dung samples and poultry wash) was found to be best for biomethanation. Of the microbe isolates, isolates from buffalo, pig and paper mill wastes appear to be most effective. Pretreated sawdust and rice straw were found to be good subtrates for biomethanation. Of the different plant biomass used Spirogyra (algae), Ipomea and water hyacinth were most effective whereas Jatropa gossypifolia and Parthenium sp. were the least effective. Biomethanation of Spirogyra was carried out both in anoxic and oxic conditions. Though methane production decreased enormously under oxic conditions, definite methane production continued indicating that the biomethanation process is not exclusively anoxic. Similarly, biomethanation of sewage samples from different sewage treatment plants were carried out with and without isolated methanogens and methane production was found to be moderate.  相似文献   
16.
The degradative characteristics of butachlor (N-Butoxymethyl-2-chloro-2',6'-diethyla- cetanilide) were studied under controlled laboratory conditions in clay loam alluvial (AL) soil (Typic udifluvent) and coastal saline (CS) soil (Typic endoaquept) from rice cultivated fields. The application rates included field rate (FR), 2-times FR (2FR) and 10-times FR (10FR). The incubation study was carried out at 30 degrees C with and without decomposed cow manure (DCM) at 60% of maximum water holding capacity (WHC) and waterlogged soil condition. The half-life values depended on the soil types and initial concentrations of butachlor. Butachlor degraded faster in AL soil and in soil amended with DCM under waterlogged condition. Microbial degradation is the major avenue of butachlor degradation from soils.  相似文献   
17.
A laboratory study was conducted to monitor the effect of pencycuron [1-(4-chlorobenzyl)-1-cyclopentyl-3-phenylurea] on microbial parameters of alluvial (AL) soil (Typic udifluvent) and coastal saline (CS) soil (Typic endoaquept) under waterlogged condition. Pencycuron at field rate (FR), 2FR and 10FR affected the microbial biomass C (MBC), soil ergosterol content and fluorescein diacetate hydrolyzing activity (FDHA) differentially. The DCM amendment did not seem to have any counteractive effect on the toxicity of pencycuron on the microbial variables. The change in microbial metabolic quotient (qCO2) and microbial respiration quotient (QR), indicated pencycuron induced disturbance at 10FR. Present study revealed that the metabolically activated microbial population was more suppressed compared to the dormant population.  相似文献   
18.
19.
We studied the suitability of municipal solid waste compost (MSWC) application to submerged rice paddies in the perspective of metal pollution hazards associated with such materials. Experiments were conducted during the wet seasons of 1997, 1998 and 1999 on rice grown under submerged condition, at the Agriculture Experimental Farm, Calcutta University at Baruipur, West Bengal, India. The treatments consisted of control, no input; MSWC, at 60 kgNha(-1); well decomposed cow manure (DCM), at 60 kgNha(-1); MSWC (30 kgNha(-1)) +Urea (30 kgNha(-1)); DCM (30 kgNha(-1)) +U (30 kgNha(-1)) and Fertilizer, (at 60:30:30 NPK kgha(-1) through urea, single superphosphate and muriate of potash respectively). Soil microbial biomass-C (MBC), MBC as percentage of organic-C (ratio index value, RIV), urease and acid phosphatase activities were higher in DCM than MSWC-treated soils, due to higher amount of biogenic organic materials like water soluble organic carbon, carbohydrate and mineralizable nitrogen in the former. The studied parameters were higher when urea was integrated with DCM or MSWC, compared to their single applications. Soil MBC, urease and acid phosphatase activities periodically declined up to 60 day after transplanting (DAT) and then increased after crop harvest. The heavy metals in MSWC did not detrimentally influence MBC, urease and acid phosphatase activities of soil. In the event of long term MSWC application, changes in soil quality parameters should be monitored regularly, since heavy metals once entering into soil persist over a long period.  相似文献   
20.
Climate change: potential impact on plant diseases   总被引:1,自引:0,他引:1  
Global climate has changed since pre-industrial times. Atmospheric CO(2), a major greenhouse gas, has increased by nearly 30% and temperature has risen by 0.3 to 0.6 degrees C. The intergovernmental panel on climate change predicts that with the current emission scenario, global mean temperature would rise between 0.9 and 3.5 degrees C by the year 2100. There are, however, many uncertainties that influence these predictions. Despite the significance of weather on plant diseases, comprehensive analysis of how climate change will influence plant diseases that impact primary production in agricultural systems is presently unavailable. Evaluation of the limited literature in this area suggests that the most likely impact of climate change will be felt in three areas: in losses from plant diseases, in the efficacy of disease management strategies and in the geographical distribution of plant diseases. Climate change could have positive, negative or no impact on individual plant diseases. More research is needed to obtain base-line information on different disease systems. Most plant disease models use different climatic variables and operate at a different spatial and temporal scale than do the global climate models. Improvements in methodology are necessary to realistically assess disease impacts at a global scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号